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Abstract

This paper deals with free vibration problems of non-uniform Euler–Bernoulli beam under various supporting

conditions. The technique we have used is based on applying the Adomian modified decomposition method (AMDM) to

our vibration problems. Doing some simple mathematical operations on the method, we can obtain ith natural frequencies

and mode shapes one at a time. The computed results agree well with those analytical and numerical results given in the

literatures. These results indicate that the present analysis is accurate, and provides a unified and systematic procedure

which is simple and more straightforward than the other modal analysis.

Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The vibration problems of non-uniform Euler–Bernoulli beams with general elastically end constraints is a
problem that has been extensively studied by several investigators. Mabie and Rogers [1,2] studied several
cases of tapered beams with different end conditions. Laura [3,4] treated various cases of non-uniform beams
with different conditions of end restraints. Naguleswaran [5–7] obtained a direct solution for the transverse
vibration of Euler–Bernoulli wedge and cone beams. Goel [8] analyzed the effect of rotational restraint at
either end of a linearly tapered beam. Grossi [9–11] studied various problems of tapered beams with elastically
restrained ends by means of the Rayleigh–Ritz and Rayleigh–Schmidt methods. Abrate [12] obtained the exact
solution for the vibration of non-uniform rods and beams. Lee et al. [13] studied the analysis of non-uniform
beam vibration by a green function method in the Laplace transform domain. Ho and Chen [14] studied the
analysis of general elastically end restrained non-uniform beams using differential transform. Finally, Auciello
[15,16] studied the free vibrations of tapered beams with flexible ends by using Bessel’s functions.

In this study, a new computed approach called Adomian modified decomposition method (AMDM) is
introduced to solve the vibration problems. The concept of AMDM was first proposed by Adomian and was
ee front matter Crown Copyright r 2008 Published by Elsevier Ltd. All rights reserved.
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applied to solve linear and nonlinear initial/boundary-value problems in physics [17–20]. In this paper, the
vibration problems of non-uniform beams with various classical boundary conditions and flexible end
conditions are considered. Using the AMDM, the governing differential equation becomes a recursive
algebraic equation and boundary conditions become simple algebraic frequency equations which are suitable
for symbolic computation. Moreover, after some simple algebraic operations on these frequency equations of
any ith natural frequency, the closed-form series solution of any ith mode shape can be obtained. Finally,
some problems of non-uniform beams are solved and show excellent agreement with the published results to
verify the accuracy and efficiency of the present method.
2. The principle of AMDM

In order to solve vibration problems by the AMDM, the basic theory is stated in brief in this section.
Consider the equation

FyðxÞ ¼ gðxÞ, (1)

where F represents a general nonlinear ordinary differential operator involving both linear and nonlinear
parts, and g(x) is a given function. The linear terms in Fy are decomposed into Ly+Ry, where L is an
invertible operator, which is taken as the highest-order derivative and R is the remainder of the linear
operator. Thus, Eq. (1) can be written as

Lyþ RyþNy ¼ g, (2)

where Ny represents the nonlinear terms in Fy. Eq. (2) corresponds to an initial-value problem or a boundary-
value problem. Solving for Ly, one can obtain

y ¼ Fþ L�1g� L�1Ry� L�1Ny, (3)

where F is an integration constant, and LF ¼ 0 is satisfied. Corresponding to an initial-value value problem,
the operator L�1 may be regarded as a definite integration from 0 to x. In order to solve Eq. (3) by the
AMDM, we decompose y into the infinite sum of convergent series

y ¼
X1
k¼0

ckxk, (4)

and the nonlinear term Ny is decomposed as

Ny ¼
X1
k¼0

xkAkðc0; c1; . . . ; ckÞ, (5)

where the Ak are known as Adomian coefficients. The given function g(x) is also decomposed as

gðxÞ ¼
X1
k¼0

gkxk. (6)

By plugging Eqs. (4)–(6) into Eq. (3) gives

y ¼
X1
k¼0

ckxk ¼ Fþ L�1
X1
k¼0

gkxk

 !
� L�1R

X1
k¼0

ckxk

 !
� L�1

X1
k¼0

xkAkðc0; c1; . . . ; ckÞ

 !
. (7)

The coefficients ck of each term in series (7) can be decided by the recurrence relation, and the power series
solutions of linear homogeneous differential equations in initial-value problems yield simple recurrence
relations for the coefficients ck. However, in practice all the coefficients ck in series (7) cannot be determined
exactly, and the solutions can only be approximated by a truncated series

Pn�1
k¼0ckxk.
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3. Using the AMDM to analyze the free vibration problem of non-uniform beam

Let us consider the tapered beam of length l, shown in Fig. 1, with the rotational and translational flexible
ends. The equation of motion for transverse vibrations of a non-uniform elastic beam is given by

q2

qx2
EIðxÞ

q2yðx; tÞ

qx2

� �
þ rAðxÞ

q2yðx; tÞ

qt2
¼ 0; 0oxol, (8)

where y(x, t) is the transverse deflection, E is Young’s modulus, A(x) is the cross-sectional area at the position
x, I(x) is the moment of inertia of A(x), r is the mass density of the beam material and t is time.

For any mode of vibration, the lateral deflection y(x, t) may be written in the form

yðx; tÞ ¼ Y ðxÞhðtÞ, (9)

where Y(x) is the modal deflection and h(t) is a harmonic function of time t. If o denotes the circular frequency
of h(t), then

q2yðx; tÞ

qt2
¼ �o2Y ðxÞhðtÞ, (10)

and the eigenvalue problem of Eq. (8) reduces to the differential equation

d2

dx2
EIðxÞ

d2Y ðxÞ

dx2

� �
� rAðxÞo2Y ðxÞ ¼ 0; 0oxol. (11)

The boundary conditions, in the presence of constraints with the translational spring constants kTL, kTR, the
rotational spring constants kRL, are given by

EIðxÞ
d2Y ðxÞ

dx2
� kRL

dY ðxÞ

dx
¼ 0, (12)

d

dx
EIðxÞ

d2Y ðxÞ

dx2

� �
þ kTLY ðxÞ ¼ 0 (13)

at x ¼ 0, and

EIðxÞ
d2Y ðxÞ

dx2
þ kRR

dY ðxÞ

dx
¼ 0, (14)

d

dx
EIðxÞ

d2Y ðxÞ

dx2

� �
� kTRY ðxÞ ¼ 0 (15)

at x ¼ l.
l

kTL kTR

x

kRRkRL

E, I(x), �, A(x)

b0

h0

b1

h1

y(x,t)y(x,t)

z

Fig. 1. A linearly tapered Euler–Bernoulli beam with rotational and translational flexible ends.
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Assuming both the depth b(x) and the height h(x) of the cross-section can vary linearly according to the
taper ratios of the beam ab ¼ b1/b0 and ah ¼ h1/h0, that is,

bðxÞ ¼ b0 1þ ðab � 1Þ
x

l

h i
; hðxÞ ¼ h0 1þ ðah � 1Þ

x

l

h i
, (16)

where b0, b1 are the cross-sectional depths at x ¼ 0 and l, respectively, and h0, h1 are the cross-sectional heights
at x ¼ 0 and l, respectively, then the area and moment of inertia of the section will vary according to the
following laws:

AðxÞ ¼ bðxÞhðxÞ ¼ A0 1þ ðab � 1Þ
x

l

h i
1þ ðah � 1Þ

x

l

h i
, (17)

IðxÞ ¼
bðxÞ½hðxÞ�3

12
¼ I0 1þ ðab � 1Þ

x

l

h i
1þ ðah � 1Þ

x

l

h i3
, (18)

where A0 ¼ b0h0 and I0 ¼ b0h
3
0=12 are the cross-sectional area and the moment of inertia at x ¼ 0. By

setting

bb ¼ 1� ab; bh ¼ 1� ah, (19)

Eq. (11) can be written as

d2

dx2
1� bb

x

l

� �
1� bh

x

l

� �3 d2Y ðxÞ
dx2

� �
�

rA0o2

EI0
1� bb

x

l

� �
1� bh

x

l

� �
Y ðxÞ ¼ 0, (20)

and the boundary conditions of Eqs. (12)–(15) can also be written as

d2Y ðxÞ

dx2
�

kRL

EI0

dY ðxÞ

dx
¼ 0, (21)

d3Y ðxÞ

dx3
�
ðbb þ 3bhÞ

l

d2Y ðxÞ

dx2
þ

kTL

EI0
Y ðxÞ ¼ 0 (22)

at x ¼ 0, and

d2Y ðxÞ

dx2
þ

kRR

EI1

dY ðxÞ

dx
¼ 0, (23)

d3Y ðxÞ

dx3
�

1

l

bb

1� bb

þ
3bh

1� bh

� �
d2Y ðxÞ

dx2
�

kTR

EI1
Y ðxÞ ¼ 0 (24)

at x ¼ l, where I1 ¼ aba3hI0 ¼ ð1� bbÞð1� bhÞ
3I0.

Without loss of generality, the following dimensionless quantities are introduced.

X ¼
x

l
; Y ðX Þ ¼

Y ðxÞ

l
; l ¼ O2 ¼

rA0o2l4

EI0
, (25)

where O ¼ o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA0l4=EI0

q
is the dimensionless natural frequency of the beam, then Eq. (20) simplifies in the

dimensionless form as follows:

d2

dX 2
ð1� bbX Þð1� bhX Þ3

d2Y ðX Þ

dX 2

� �
� lð1� bbX Þð1� bhX ÞY ðX Þ ¼ 0; 0oXo1. (26)

Eq. (26) can be expanded as follows:

d4Y ðX Þ

dX 4
� 2

bb

1� bbX
þ

3bh

1� bhX

� �
d3Y ðX Þ

dX 3

þ 6
bbbh

ð1� bbX Þð1� bhX Þ
þ

b2h
ð1� bhX Þ2

" #
d2Y ðX Þ

dX 2
�

l

ð1� bhX Þ2
Y ðX Þ ¼ 0. (27)
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It is convenient to define the following dimensionless coefficients:

KTL ¼
kTLl3

EI0
; KTR ¼

kTRl3

EI1
; KRL ¼

kRLl

EI0
; KRR ¼

kRRl

EI1
, (28)

the boundary conditions of Eqs. (21)–(24) are given by the following dimensionless forms:

Y 00ð0Þ � KRLY 0ð0Þ ¼ 0, (29)

Y 000ð0Þ � ðbb þ 3bhÞY
00ð0Þ þ KTLY ð0Þ ¼ 0, (30)

and

Y 00ð1Þ þ KRRY 0ð1Þ ¼ 0, (31)

Y 000ð1Þ �
bb

1� bb

þ
3bh

1� bh

� �
Y 00ð1Þ � KTRY ð1Þ ¼ 0, (32)

where Y 0ðX Þ ¼ dY ðX Þ=dX ; Y 00ðX Þ ¼ d2Y ðX Þ=dX 2; Y 000ðX Þ ¼ d3Y ðX Þ=dX 3.
The deflection Y(X) can be solved by the AMDM. Eq. (27) can be expressed in the following form:

Y ðX Þ ¼ FðX Þ þ L�1 2
bb

1� bbX
þ

3bh

1� bhX

� �
d3Y ðX Þ

dX 3

	

�6
bbbh

ð1� bbX Þð1� bhX Þ
þ

b2h
ð1� bhX Þ2

" #
d2Y ðX Þ

dX 2
þ

l

ð1� bhX Þ2
Y ðX Þ

)
, (33)

where L�1 ¼
R x

0

R x

0

R x

0

R x

0 � � � dX dX dX dX . Now the decomposition Y ðX Þ ¼
P1

k¼0CkX k can be put together
with Eq. (33) to yield

Y ðX Þ ¼
X1
k¼0

CkX k ¼ FðX Þ þ L�1 2
bb

1� bbX
þ

3bh

1� bhX

� �X1
k¼0

ðk þ 3Þðk þ 2Þðk þ 1ÞCkþ3X k

(

� 6
bbbh

ð1� bbX Þð1� bhX Þ
þ

b2h
ð1� bhX Þ2

" #X1
k¼0

ðk þ 2Þðk þ 1ÞCkþ2X
k

þ
l

ð1� bhX Þ2

X1
k¼0

CkX k

)
, (34)

where we have

FðX Þ ¼ Y ð0Þ þ Y 0ð0ÞX þ
Y 00ð0Þ

2
X 2 þ

Y 000ð0Þ

6
X 3 (35)

as the initial term of the decomposition. By using the power series, one can obtain

1

1� bbX
¼
X1
j¼0

ðbbX Þj ;
1

1� bhX
¼
X1
j¼0

ðbhX Þj ; bba0; bha0 (36)

and using the Cauchy product, one can also obtain

1

ð1� bbX Þð1� bhX Þ
¼
X1
j¼0

ðbbX Þj
X1
j¼0

ðbhX Þj ¼
X1
j¼0

X j
Xj

m¼0

bm
b b

j�m
h , (37)

1

ð1� bhX Þ2
¼
X1
j¼0

ðbhX Þj
X1
j¼0

ðbhX Þj ¼
X1
j¼0

ðj þ 1ÞðbhX Þj, (38)
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and

1

1� bbX

X1
k¼0

ðk þ 3Þðk þ 2Þðk þ 1ÞCkþ3X
k ¼

X1
k¼0

X k
Xk

j¼0

bðk�jÞ
b ðj þ 3Þðj þ 2Þðj þ 1ÞCjþ3, (39)

1

1� bhX

X1
k¼0

ðk þ 3Þðk þ 2Þðk þ 1ÞCkþ3X
k ¼

X1
k¼0

X k
Xk

j¼0

bðk�jÞ
h ðj þ 3Þðj þ 2Þðj þ 1ÞCjþ3, (40)

1

ð1� bbX Þð1� bhX Þ

X1
k¼0

ðk þ 2Þðk þ 1ÞCkþ2X
k ¼

X1
k¼0

X k
Xk

j¼0

Xk�j

m¼0

bm
b b

k�j�m
h ðj þ 2Þðj þ 1ÞCjþ2, (41)

1

ð1� bhX Þ2

X1
k¼0

ðk þ 2Þðk þ 1ÞCkþ2X k ¼
X1
k¼0

X k
Xk

j¼0

bk�j
h ðk � j þ 1Þðj þ 2Þðj þ 1ÞCjþ2, (42)

1

ð1� bhX Þ2

X1
k¼0

CkX k ¼
X1
k¼0

X k
Xk

j¼0

bk�j
ðk � j þ 1ÞCj. (43)

By substituting Eqs. (39)–(43) into Eq. (34), one can obtain

X1
k¼0

CkX k ¼ FðX Þ þ L�1
X1
k¼0

X k
Xk

j¼0

ðj þ 3Þðj þ 2Þðj þ 1Þ 2bk�jþ1
b þ 6bðk�jþ1Þ

h

� �
Cjþ3

h(

�ðj þ 2Þðj þ 1Þ 6ðk � j þ 1Þbk�jþ2
h þ 6

Xk�j

m¼0

bmþ1
b bk�j�mþ1

h

 !
Cjþ2 þ lðk � j þ 1Þbk�j

h Cj

)
. (44)

By integrating Eq. (44), one can obtain

X1
k¼0

CkX k ¼ Y ð0Þ þ Y 0ð0ÞX þ
Y 00ð0Þ

2
X 2 þ

Y 000ð0Þ

6
X 3 þ

X1
k¼0

X kþ4

ðk þ 1Þðk þ 2Þðk þ 3Þðk þ 4Þ

	

�
Xk

j¼0

ðj þ 3Þðj þ 2Þðj þ 1Þ 2bk�jþ1
b þ 6bðk�jþ1Þ

h

� �
Cjþ3

h
� ðk � j þ 1Þðj þ 2Þðj þ 1Þ

� 6ðk � j þ 1Þbk�jþ2
h þ 6

Xk�j

m¼0

bmþ1
b bk�j�mþ1

h

 !
Cjþ2 þ lðk � j þ 1Þbk�j

h Cj

#)
. (45)

Finally, equating coefficients of like powers of X, we derive the recurrence relation for the coefficients Ck

C0 ¼ Y ð0Þ; C1 ¼ Y 0ð0Þ; C2 ¼
Y 00ð0Þ

2
; C3 ¼

Y 000ð0Þ

6
, (46)

and for kX4,

Ck ¼
1

kðk � 1Þðk � 2Þðk � 3Þ

Xk�4
j¼0

ðj þ 3Þðj þ 2Þðj þ 1Þ 2bk�j�3
b þ 6bk�j�3

h

� �
Cjþ3

h

� ðj þ 2Þðj þ 1Þ 6ðk � j � 3Þbk�j�2
h þ 6

Xk�j�4

m¼0

bmþ1
b bk�j�m�3

h

 !
Cjþ2þlðk � j � 3Þbk�j�4

h Cj

i
. (47)

Therefore, we can find the coefficients Ck from the recurrent Eqs. (46), and (47), and finally we can
get the solution Y(X) from Eq. (34). The series solution, of course, is Y ðX Þ ¼

P1
k¼0CkX k. However, in

practice all the coefficients Ck in series solution cannot be determined exactly, and the solutions can
only be approximated by a truncated series

Pn�1
k¼0CkX k with n-term approximation. We can now form

successive approximants, f½n�ðX Þ ¼
Pn�1

k¼0CkX k, as n increases and the boundary conditions are also met.
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Thus f½1�ðX Þ ¼ C0; f
½2�
ðX Þ ¼ f½1�ðX Þ þ C1X ; f

½3�
ðX Þ ¼ f½2�ðX Þ þ C2X

2, serve as approximate solutions with
increasing accuracy as n-N, and is also obligated to, of course, satisfy the boundary conditions.

The four coefficients Ck(k ¼ 0,1,2,3) in Eq. (46) can be decided by the BCs of Eqs. (29) and (30). In this case,
the two coefficients C0 and C1 can be chosen as the arbitrary constants and the other two coefficients C2 and
C3 can be expressed as the functions of C0 and C1. That is, from Eqs. (29), (30) and (46), by setting

C2 ¼
KRL

2
C1, (48)

C3 ¼
ðbb þ 3bhÞKRLC1 � KTLC0

6
, (49)

the initial term F(X) in Eq. (35) is the function of C0, C1 and from recurrence relation of Eq. (47), the
coefficients Ck(kX4) are the function of C0, C1 and l. Hence the n-term approximation f½n�ðX Þ ¼

Pn�1
k¼0CkX k

of the modal deflection Y(x) is also the function of C0, C1 and l. By substituting f[n](X) into BCs of Eqs. (31)
and (32), the two equations are obtained:

f
½n�
r0 ðlÞC0 þ f

½n�
r1 ðlÞC1 ¼ 0; r ¼ 1; 2. (50)

For non-trivial solutions C0 and C1 the frequency equation is given as

f
½n�
10ðlÞ f

½n�
11ðlÞ

f
½n�
20ðlÞ f

½n�
21ðlÞ












 ¼ 0. (51)

The ith estimated eigenvalue l½n�i corresponding to n is obtained by Eq. (51), that is the ith estimated

dimensionless natural frequency O½n�i ¼

ffiffiffiffiffiffiffi
l½n�i

q
is also obtained and n is decided by the following equation:

O½n�i � O½n�1�i




 


p�, (52)

where O½n�1�i is the ith estimated dimensionless natural frequency corresponding to n�1, and e is a preset small
value. If Eq. (52) is satisfied, then O½n�i is the ith dimensionless natural frequency Oi. By substituting O½n�i into
any one of Eq. (50), one can obtain

C1 ¼ �
f
½n�
r0 ðO

½n�
i Þ

f
½n�
r1 ðO

½n�
i Þ

C0; r ¼ 1 or 2, (53)

and all the other coefficients Ck can obtain from Eqs. (46) and (47). Furthermore, the ith mode shape f½n�i

corresponding to the ith eigenvalue O½n�i is obtained by

f½n�i ðX Þ ¼
Xn�1
k¼0

C
½i�
k X k, (54)

where C
½i�
k ðX Þ is Ck(X) whose l is substituted by li, and f½n�i is the ith eigenfunction corresponding to the ith

eigenvalue li. By normalizing Eq. (54), the ith normalized eigenfunction is defined as

f̄
½n�

i ðX Þ ¼
f½n�i ðX ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1

0 ½f
½n�
i ðX Þ�

2dX

q , (55)

where f̄
½n�

i ðX Þ is the ith mode shape function of the beam corresponding to the ith natural frequency o½n�i ,

o½n�i ¼

ffiffiffiffiffiffiffi
l½n�i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAl4

q
¼ O½n�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAl4

q
.

Finally, the free transverse vibration of non-uniform Euler–Bernoulli wedge beam (ab ¼ 1, ah ¼ a), non-
uniform Euler–Bernoulli cone beam (ab ¼ ah ¼ a), and uniform Euler–Bernoulli beam (ab ¼ ah ¼ 1) are,
respectively, analyzed by the AMAD. Let us discuss as follows.



ARTICLE IN PRESS
J.-C. Hsu et al. / Journal of Sound and Vibration 318 (2008) 965–981972
3.1. Non-uniform Euler– Bernoulli wedge beam (ab ¼ 1, ah ¼ a; bb ¼ 0, bh ¼ b)

In the wedge beam the area and moment of inertia of the section will be obtained from Eqs. (17) and (18)

AðxÞ ¼ A0 1þ ða� 1Þ
x

l

h i
¼ A0 1� b

x

l

� �
, (56)

IðxÞ ¼ I0 1þ ða� 1Þ
x

l

h i3
¼ I0 1� b

x

l

� �3
. (57)

The equation of motion in dimensionless form from Eq. (27) can be written as

d4Y ðX Þ

dX 4
�

6b
1� bX

d3Y ðX Þ

dX 3
þ

6b2

ð1� bX Þ2
d2Y ðX Þ

dX 2
�

l

ð1� bX Þ2
Y ðX Þ ¼ 0 (58)

with the associated boundary conditions from Eqs. (29)–(32) as

Y 00ð0Þ � KRLY 0ð0Þ ¼ 0, (59)

Y 000ð0Þ � 3bY 00ð0Þ þ KTLY ð0Þ ¼ 0, (60)

and

Y 00ð1Þ þ KRRY 0ð1Þ ¼ 0, (61)

Y 000ð1Þ �
3b

1� b
Y 00ð1Þ � KTRY ð1Þ ¼ 0, (62)

the recurrence relation for the coefficients Ck in Eqs. (46) and (47) can be written as

C0 ¼ Y ð0Þ; C1 ¼ Y 0ð0Þ; C2 ¼
Y 00ð0Þ

2
; C3 ¼

Y 000ð0Þ

6
, (63)

and for kX4,

Ck ¼
1

kðk � 1Þðk � 2Þðk � 3Þ

Xk�4
j¼0

6ðj þ 3Þðj þ 2Þðj þ 1Þbk�j�3Cjþ3

�
�6ðk � j � 3Þðj þ 2Þðj þ 1Þbk�j�2Cjþ2 þ lðk � j � 3Þbk�j�4Cj

�
, (64)

where the two coefficients C2 and C3 can be obtained from Eqs. (48) and (49)

C2 ¼
KRL

2
C1, (65)

C3 ¼
3bKRLC1 � KTLC0

6
, (66)

and the closed-form series solution in Eq. (54) is obtained.

3.2. Non-uniform Euler– Bernoulli cone beam (ab ¼ ah ¼ a; b ¼ bh ¼ b)

In the cone beam the area and moment of inertia of the section will be obtained from Eqs. (17)
and (18)

AðxÞ ¼ A0 1þ ða� 1Þ
x

l

h i2
¼ A0 1� b

x

l

� �2
, (67)

IðxÞ ¼ I0 1þ ða� 1Þ
x

l

h i4
¼ I0 1� b

x

l

� �4
. (68)
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The equation of motion in dimensionless form from Eq. (27) can be written as

d4Y ðX Þ

dX 4
�

8b
1� bX

d3Y ðX Þ

dX 3
þ

12b2

ð1� bX Þ2
d2Y ðX Þ

dX 2
�

l

ð1� bX Þ2
Y ðX Þ ¼ 0 (69)

with the associated boundary conditions from Eqs. (29)–(32) as

Y 00ð0Þ � KRLY 0ð0Þ ¼ 0, (70)

Y 000ð0Þ � 4bY 00ð0Þ þ KTLY ð0Þ ¼ 0, (71)

and

Y 00ð1Þ þ KRRY 0ð1Þ ¼ 0, (72)

Y 000ð1Þ �
4b

1� b
Y 00ð1Þ � KTRY ð1Þ ¼ 0, (73)

the recurrence relation for the coefficients Ck in Eqs. (46) and (47) can be written as

C0 ¼ Y ð0Þ; C1 ¼ Y 0ð0Þ; C2 ¼
Y 00ð0Þ

2
; C3 ¼

Y 000ð0Þ

6
, (74)

and for kX4,

Ck ¼
1

kðk � 1Þðk � 2Þðk � 3Þ

Xk�4
j¼0

8ðj þ 3Þðj þ 2Þðj þ 1Þbk�j�3Cjþ3

�
�12ðk � j � 3Þðj þ 2Þðj þ 1Þbk�j�2Cjþ2 þ lðk � j � 3Þbk�j�4Cj

�
, (75)

where the two coefficients C2 and C3 can be obtained from Eqs. (48) and (49)

C2 ¼
KRL

2
C1, (76)

C3 ¼
4bKRLC1 � KTLC0

6
, (77)

and the closed-form series solution in Eq. (54) is obtained.

3.3. Uniform Euler– Bernoulli beam (ab ¼ ah ¼ 1; b ¼ bh ¼ 0)

In the uniform beam the area and moment of inertia of the section are constants, that is, A(x) ¼ A1 ¼ A0,
I(x) ¼ I1 ¼ I0, the equation of motion in dimensionless form from Eq. (27) can be written as

d4Y ðX Þ

dX 4
� lY ðX Þ ¼ 0 (78)

with the associated boundary conditions from Eqs. (29)–(32) as

Y 00ð0Þ � KRLY 0ð0Þ ¼ 0, (79)

Y 000ð0Þ þ KTLY ð0Þ ¼ 0, (80)

and

Y 00ð1Þ þ KRRY 0ð1Þ ¼ 0, (81)

Y 000ð1Þ � KTRY ð1Þ ¼ 0, (82)

the recurrence relation for the coefficients Ck in Eqs. (46) and (47) can be written as

C0 ¼ Y ð0Þ; C1 ¼ Y 0ð0Þ; C2 ¼
Y 00ð0Þ

2
; C3 ¼

Y 000ð0Þ

6
, (83)
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and for kX4,

Ck ¼
l

kðk � 1Þðk � 2Þðk � 3Þ
Ck�4, (84)

where the two coefficients C2 and C3 can be obtained from Eqs. (48) and (49)

C2 ¼
KRL

2
C1; C3 ¼

�KTLC0

6
, (85)

and the closed-form series solution in Eq. (54) is obtained.
Hence, by using the method of AMDM, we can easily solve the vibration problem with various boundary

conditions and obtain the closed-form series solutions. The proposed method is very efficient with the aid of
symbolic computation.
4. Numerical results

In order to demonstrate the feasibility and the efficiency of AMDM in this paper, the previous three cases
are discussed as follows. By using the formula and results of the previous cases, one can obtain the natural
frequencies and mode shapes of the beam with various boundary conditions at both ends. In the particular
cases, if the dimensionless spring constants are allowed to become zero or infinity, then the limiting cases of
perfect constraints can be easily recovered. For example, if KTL-N and KRL-N, then the beam is
considered as the cantilever beam. If KTL-N, KRL ¼ 0, and KTR-N, KRR ¼ 0, then the beam is considered
as the simply supported beam. If KTL-N, KRL-N, and KTR-N, KRR-N, then the beam is considered
as the clamped–clamped beam. The computed results are compared with the analytical and numerical results
in the literatures.
4.1. Non-uniform clamped– free wedge beam (ab ¼ 1; ah ¼ a ¼ 0.5)

In this case, let us consider the clamped–free beam which the area and moment of inertia of the section will
be obtained from Eqs. (56) and (57)

AðxÞ ¼ A0 1� 0:5
x

l

� �
, (86)

IðxÞ ¼ I0 1� 0:5
x

l

� �3
, (87)

and the boundary conditions are given as

Y ð0Þ ¼ 0; Y 0ð0Þ ¼ 0, (88)

Y 00ð1Þ ¼ 0; Y 000ð1Þ ¼ 0, (89)

the beam is clamped–free, that is, KRL-N, KTL-N, KRR ¼ 0, KTR ¼ 0. Hence, from Eqs. (65) and (66), one
can set C0 ¼ 0, C1 ¼ 0, and set the two coefficients C2, C3 as arbitrary constants, then the coefficients Ck can
be obtained successively from Eq. (64). By substituting f½n�ðX Þ ¼

Pn�1
k¼0CkX k into BC (89), the two algebraic

equations of C2 and C3 are given as follows: when Y 00ð1Þ ¼ 0,

½f½n�ð1Þ�00 ¼ 0;
Xn�3
k¼0

ðk þ 2Þðk þ 1ÞCkþ2 ¼ f
½n�
12ðlÞC2 þ f

½n�
13ðlÞC3 ¼ 0, (90)

and when Y 000ð1Þ ¼ 0,

½f½n�ð1Þ�000 ¼ 0;
Xn�4
k¼0

ðk þ 3Þðk þ 2Þðk þ 1ÞCkþ3 ¼ f
½n�
22ðlÞC2 þ f

½n�
23ðlÞC3 ¼ 0, (91)
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for the non-trivial solutions C2 and C3, the frequency equation can be obtained by use of Cramer’s rule

f
½n�
12ðlÞ f

½n�
13ðlÞ

f
½n�
22ðlÞ f

½n�
23ðlÞ












 ¼ 0. (92)

By solving Eq. (92) for the approximate term n, and taking real root for l, O ¼
ffiffiffi
l
p

, one can find that for
n ¼ 30,

O½30�1 � O½29�1




 


p� ¼ 0:00001. (93)

Thus, the dimensionless natural frequency and natural frequency corresponding to n ¼ 30, respectively, can be
obtained as

O1 ¼ O½30�1 ¼ 3:8238, (94)

o1 ¼ O1

ffiffiffiffiffiffiffiffiffiffi
EI

rAl4

s
¼ 3:8238

ffiffiffiffiffiffiffiffiffiffiffiffi
EI0

rA0l
4

s
, (95)

by substituting O½30�1 into Eqs. (64) and (54) and normalizing it by Eq. (55), the first mode shape function is
given and is

f̄
½30�

1 ¼ 2:487898X 2 þ 0:0761805X 3 � 0:253852X 4 � 0:214509X 5

� 0:0354020X 6 þ 0:00928653X 7 þ 0:0125543X 8 þ 0:00831645X 9

þ 0:00487125X 10 þ 0:00274446X 11 þ 0:00151636X 12 þ 0:000826246X 13

þ 0:000445259X 14 þ 0:000237780X 15 þ 0:000126026X 16

þ 0:0000663726X 17 þ 0:0000347681X 18 þ 0:0000181291X 19

þ 9:415662� 10�6X 20 þ 4:873425� 10�6X 21 þ 2:514878� 10�6X 22

þ 1:294370� 10�6X 23 þ 6:646520� 10�7X 24 þ 3:405954� 10�7X 25

þ 1:742169� 10�7X 26 þ 8:896778� 10�8X 27 þ 4:536694� 10�8X 28

þ 2:310328� 10�8X 29 þ 1:175142� 10�8X 30. (96)

Following the same procedure as shown above, the other natural frequencies and mode shapes can be
obtained. In Figs. 2 and 3, as the approximate term number n increases, the natural frequencies O1�O6

converge to 3.82378, 18.31726, 47.26483, 90.45048, 148.00174, and 219.92368 very quickly one by one without
missing any frequency. Those complete natural frequencies lead to corresponding mode shapes correctly,
which are shown in Fig. 4. Finally, the calculated results correspond very well with the previous works [13,14]
as shown in Table 1.
4.2. Truncated clamped– free wedge and cone beams (0oabo1, 0oaho1)

In this case of clamped–free tapered beam without translational springs and rotational springs at both ends
(KRL-N, KTL-N, KRR ¼ 0, KTR ¼ 0), following the same steps as previous, the first three dimensionless
natural frequencies O1�O3 can be obtained and listed in Tables 2 and 3. From these tables, the calculated
results compared with Ref. [6] are in close agreement. The results are shown in Fig. 5, one can find that the
natural frequencies of cone beam are larger than the natural frequencies of wedge beam for the same taper
ratio a, and the larger the taper ratio a is, the smaller the first natural frequency O1 of wedge and cone beam is,
but the second and third natural frequencies O2�O3 of wedge and cone beam become larger as a increases.
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Fig. 3. The convergence of the fourth, fifth, and sixth dimensionless natural frequencies (O4 ¼ 90.45048, O5 ¼ 148.00174,
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Fig. 2. The convergence of the first, second, and third dimensionless natural frequencies (O1 ¼ 3.82378, O2 ¼ 18.31726, O3 ¼ 47.26483).
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4.3. Wedge and cone beams with flexible constraints at both ends

In the case for abX1 and ah41, in order to obtain the calculated results of the beams by use of the previous
analyses in the paper, the beam must be inverted, that is, the tapered ratio ab must be replaced by 1/ab, ah by
1/ah, and the dimensionless natural frequency O must be replaced by ahO. Hence the results are obtained and
listed in Tables 4–8.
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Table 1

The first three dimensionless natural frequencies of non-uniform wedge beam (ab ¼ 1, ah ¼ a ¼ 0.5)

n O1 O2 O3

(I) (II) Present (I) (II) Present (I) (II) Present

20 3.8281 3.8286 3.82809 18.3753 18.3758 18.37532 47.4212 47.4212 47.42121

40 3.8238 3.8237 3.82378 18.3173 18.3172 18.31726 47.2649 47.2648 47.26491

60 3.8238 3.8238 3.82378 18.3173 18.3172 18.31726 47.2648 47.2648 47.26483

(I) Ho’s results [14]; (II) Lee’s results [13].
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Fig. 4. The first six mode shape functions.

Table 2

The first three dimensionless frequencies Oi, i ¼ 1,2,3 of clamped–free wedge beams (ab ¼ 1, ah ¼ a)

a O1 O2 O3

(I) Present (I) Present (I) Present

0.1 4.6307 4.63074 14.9308 14.93080 32.8331 32.83313

0.2 4.2925 4.29250 15.7427 15.74270 36.8845 36.88456

0.3 4.0817 4.08172 16.6252 16.62525 40.5879 40.58788

0.4 3.9343 3.93428 17.4879 17.48786 44.0248 44.02481

0.5 3.8238 3.82379 18.3173 18.31726 47.2648 47.26483

0.6 3.7371 3.73708 19.1138 19.11381 50.3559 50.35366

0.7 3.6667 3.66675 19.8806 19.88061 – 53.32220

0.8 – 3.60828 – 20.62102 – 56.19228

0.9 – 3.55870 – 21.33810 – 58.97990

1a 3.5160 3.51601 22.0345 22.03439 61.6972 61.69644

(I) the results given by Naguleswaran [6].
aUniform beam.
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Fig. 5. The first three dimensionless natural frequencies of the wedge and cone beams for various values of taper ratio a.

Table 3

The first three dimensionless frequencies Oi, i ¼ 1,2,3 of clamped–free cone beams (ab ¼ ah ¼ a)

a O1 O2 O3

(I) Present (I) Present (I) Present

0.1 7.2049 7.20500 18.6802 18.68028 37.1238 37.12396

0.2 6.1964 6.19645 18.3855 18.38553 39.8336 39.83366

0.3 5.5093 5.50930 18.6412 18.64119 42.8104 42.81044

0.4 5.0090 5.00906 19.0649 19.06488 45.7384 45.73839

0.5 4.6252 4.62517 19.5476 19.54763 48.5789 48.57892

0.6 4.3188 4.31879 20.0500 20.05000 51.3342 51.33465

0.7 4.0669 4.06694 20.5554 20.55552 – 54.01520

0.8 – 3.85512 – 21.05676 – 56.63034

0.9 – 3.67371 – 21.55025 – 59.18864

1a 3.5160 3.51601 22.0345 22.03439 61.6972 61.69644

(I) the results given by Naguleswaran [6].
aUniform beam.
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In Table 4 the square root of the first dimensionless natural frequency
ffiffiffiffiffiffi
O1

p
is given for cone beam

ab ¼ ah ¼ 1.5 and KTL ¼ KRL ¼N, for various values of the dimensionless rotational spring constants KRL

and KRR. In Table 5 the square roots of the first three dimensionless natural frequencies
ffiffiffiffiffiffi
O1

p
�

ffiffiffiffiffiffi
O3

p
are given

for cone beam ab ¼ ah ¼ 2 and KTL ¼ KRL ¼N, for various values of KRL and KRR. In Table 6 the square
root of the first three dimensionless natural frequencies

ffiffiffiffiffiffi
O1

p
�

ffiffiffiffiffiffi
O3

p
are given for wedge beam ab ¼ 1, ah ¼ 1.5

and KTL ¼ KRL ¼N, for various values of KRL and KRR. From Tables 4–6 one can find that the larger the
rotational spring constants are, the larger the natural frequencies are.

In Table 7 the square roots of the first four dimensionless natural frequencies
ffiffiffiffiffiffi
O1

p
�

ffiffiffiffiffiffi
O4

p
are given for cone

beam ab ¼ ah ¼ 1.4 and KTR ¼ KRR ¼N, for various values of the dimensionless rotational spring constant
KRL and translational spring constant KTL. From this table one can find that the larger the translational spring
constant is, the larger the natural frequencies are.
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Table 5

The square root of the first three dimensionless natural frequencies
ffiffiffiffiffi
Oi

p
, i ¼ 1,2,3 for ab ¼ ah ¼ 2 and KTL ¼ KRL ¼N

KRL KRR

ffiffiffiffiffiffi
O1

p ffiffiffiffiffiffi
O2

p ffiffiffiffiffiffi
O3

p

(I) (II) Present (I) (II) Present (I) (II) Present

0 0 3.7300 3.73002 3.73003 7.4750 7.63020 7.63020 11.4201 11.42157 11.42157

0 0.01 3.7345 – 3.73454 7.4696 – 7.63167 11.4219 – 11.42247

0 0.1 3.8643 3.77372 3.77371 7.3921 7.64473 7.64473 11.4306 11.43047 11.43047

0 1 4.0635 – 4.06357 7.7619 – 7.76189 11.5038 – 11.50523

0 10 4.7625 4.75489 4.75488 8.2846 8.28460 8.28460 11.9277 11.92757 11.92757

1 0 3.7984 – 3.79840 7.6803 – 7.68029 11.4597 – 11.46031

1 0.1 3.8409 3.84092 3.84091 7.6946 7.69464 7.69464 11.4694 11.46915 11.46915

1 1 4.1249 4.12491 4.12490 7.8105 7.81050 7.81050 11.5435 11.54347 11.54347

(I) The results given by Grossi et al. [9]; (II) the results given by Auciello [15].

Table 6

The square root of the first three dimensionless natural frequencies
ffiffiffiffiffi
Oi

p
, i ¼ 1,2,3 for ab ¼ 1, ah ¼ 1.5 and KTL ¼ KTR ¼N

KRL KRR

ffiffiffiffiffiffi
O1

p ffiffiffiffiffiffi
O2

p ffiffiffiffiffiffi
O3

p

(I) (II) Present (I) (II) Present (I) (II) Present

0 0 3.4888 – 3.48881 6.9972 – 6.99720 10.4011 – 10.49113

0 0.01 3.4913 3.49136 3.49136 6.9983 6.99832 6.99829 10.4918 10.49194 10.49183

0 0.1 3.5136 3.51369 3.51369 6.9808 7.00805 7.00802 10.4981 10.49820 10.49810

0 1 3.6907 3.69075 3.69075 7.0894 7.09609 7.09605 10.5569 10.55703 10.55692

0 10 4.2027 4.20276 4.20276 7.5143 7.51439 7.51435 10.9020 10.90277 10.90264

1 0 3.5912 3.59124 3.59124 7.0610 7.06107 7.06104 10.5369 10.53703 10.53692

1 0.1 3.5936 3.61516 3.61516 7.0621 7.07170 7.07167 10.5377 10.54394 10.54383

1 1 3.7865 3.78654 3.78655 7.1583 7.15831 7.15828 10.6022 10.60229 10.60218

(I) The results given by Grossi et al. [9]; (II) the results given by Auciello [15].

Table 4

The square root of the dimensionless fundamental frequency
ffiffiffiffiffiffi
O1

p
for ab ¼ ah ¼ 1.5 and KTL ¼ KRL ¼N

KRL KRR

ffiffiffiffiffiffi
O1

p

(I) (II) Present

0 0 3.474 3.47477 3.47477

0 0.01 3.577 3.47772 3.47771

0 0.1 3.503 3.50345 3.50345

0 10 4.256 4.25615 4.25615

0 100 4.509 4.50894 4.50893

0.01 0 3.476 3.47581 3.47581

0.01 0.01 3.479 3.47875 3.47875

0.01 0.1 3.504 3.50447 3.50447

0.01 10 4.257 4.25702 4.25702

0.01 100 4.509 4.50982 4.50981

0.1 0.1 3.513 3.51356 3.51356

1 1 3.788 3.78767 3.78766

100 0.1 4.161 4.16142 4.16142

KTL ¼ kTLl3/EI0, KTR ¼ kTRl3/EI1, KRL ¼ kRLl/EI0, KRR ¼ kRRl/EI1; ab ¼ b1/b0, ah ¼ h1/h0.

(I) The results given by Grossi et al. [9]; (II) the results given by Auciello [15].
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Table 8

The square root of the first four dimensionless natural frequencies
ffiffiffiffiffi
Oi

p
, i ¼ 1,2,3,4 for ab ¼ ah ¼ 1.4 and KTL ¼ KRL ¼ 0

KTL KTR

ffiffiffiffiffiffi
O1

p ffiffiffiffiffiffi
O2

p ffiffiffiffiffiffi
O3

p ffiffiffiffiffiffi
O4

p

(I) Present (I) Present (I) Present (I) Present

0 0 – 0 – 0 – 5.19176 – 8.59573

0.001 0.001 – 0.21656 – 0.31795 – 5.19178 – 8.59574

0.01 0.01 – 0.38510 – 0.56539 – 5.19196 – 8.59578

0.1 0.1 – 0.68462 – 1.00528 – 5.19381 – 8.59619

1 1 1.2140 1.21404 1.7851 1.78509 5.2122 5.21223 8.6003 8.60028

10 10 2.1010 2.10096 3.1302 3.13023 5.3938 5.39376 8.6415 8.64148

100 100 3.0724 3.07241 5.0667 5.06670 6.7115 6.71152 9.0709 9.07091

1000 1000 3.3755 3.37553 6.5696 6.56963 9.2888 9.28876 11.5626 11.56263

N N 3.4159 3.41595 6.8687 6.86864 10.2978 10.29775 13.7260 13.72576

(I) The results given by De Rosa et al. [16].

Table 7

The square root of the first four dimensionless natural frequencies
ffiffiffiffiffi
Oi

p
, i ¼ 1,2,3,4 for ab ¼ ah ¼ 1.4 and KTL ¼ KRL ¼N

KRL KTL

ffiffiffiffiffiffi
O1

p ffiffiffiffiffiffi
O2

p ffiffiffiffiffiffi
O3

p ffiffiffiffiffiffi
O4

p

(I) Present (I) Present (I) Present (I) Present

0 0 2.3766 2.37661 5.3739 5.37387 8.7264 8.72637 12.1135 12.11351

0 0.01 – 2.37730 – 5.37394 – 8.72639 – 12.11352

0 0.1 2.3834 2.38344 5.3745 5.37454 8.7265 8.72653 12.1136 12.11357

0 1 2.4420 2.44201 5.3805 5.38055 8.7280 8.72798 12.1141 12.11412

0 10 2.8554 2.85543 5.4414 5.44142 8.7426 8.74258 12.1196 12.11961

0 100 – 3.91909 – 6.03037 – 8.89809 12.17640 12.17640

0 1000 4.3755 4.37550 7.4772 7.47721 10.2215 10.22153 – 12.85719

0 N 4.4329 4.43289 7.8008 7.80081 11.2061 11.20607 14.6219 14.62191

(I) The results given by De Rosa et al. [16].
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In Table 8 the square root of the first four dimensionless natural frequencies
ffiffiffiffiffiffi
O1

p
�

ffiffiffiffiffiffi
O4

p
are given for cone

beam ab ¼ ah ¼ 1.4 and KRL ¼ KRR ¼N, for various values of KTL and KTR. From this table one can find
that the larger the spring constants are, the larger the natural frequencies are.

From these tables one can find that the calculated results in the study compared with the results of the other
literatures are in close agreement.

5. Conclusion

By the method proposed in this study, the closed-form series solutions of the free vibrations of tapered
beams with various elastically supported conditions can be obtained. This paper presents an effective method
to solve vibration problems of non-uniform beams with various flexible ends. By using the proposed method,
any ith natural frequency and mode shape function can be obtained one at a time. The larger the approximate
term n is giving, more natural frequency can be found at the same time. The computed results are compared
closely with the results obtained by using other analytical and numerical methods. This study provides a
unified and systematic procedure which is seemingly simpler and more straightforward than the other
methods.
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